p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24⋊3C8, C25.6C4, C23.30M4(2), (C24×C4).2C2, (C23×C4).29C4, C23.31(C2×C8), (C22×C8)⋊1C22, C4.110C22≀C2, C22⋊2(C22⋊C8), C24.111(C2×C4), (C22×C4).674D4, C2.2(C24⋊3C4), C22.33(C22×C8), C2.3(C24.4C4), C23.262(C22×C4), (C23×C4).632C22, C22.44(C2×M4(2)), C23.192(C22⋊C4), (C22×C4).1615C23, (C2×C22⋊C8)⋊9C2, C2.16(C2×C22⋊C8), (C2×C4).1511(C2×D4), (C22×C4).440(C2×C4), (C2×C4).329(C22⋊C4), C22.123(C2×C22⋊C4), SmallGroup(128,511)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊3C8
G = < a,b,c,d,e | a2=b2=c2=d2=e8=1, ab=ba, eae-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, cd=dc, ce=ec, de=ed >
Subgroups: 756 in 426 conjugacy classes, 104 normal (8 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C2×C8, C22×C4, C22×C4, C22×C4, C24, C24, C22⋊C8, C22×C8, C23×C4, C23×C4, C25, C2×C22⋊C8, C24×C4, C24⋊3C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C2×C22⋊C4, C22≀C2, C22×C8, C2×M4(2), C24⋊3C4, C2×C22⋊C8, C24.4C4, C24⋊3C8
(1 23)(2 28)(3 17)(4 30)(5 19)(6 32)(7 21)(8 26)(9 24)(10 29)(11 18)(12 31)(13 20)(14 25)(15 22)(16 27)
(1 16)(2 20)(3 10)(4 22)(5 12)(6 24)(7 14)(8 18)(9 32)(11 26)(13 28)(15 30)(17 29)(19 31)(21 25)(23 27)
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,23)(2,28)(3,17)(4,30)(5,19)(6,32)(7,21)(8,26)(9,24)(10,29)(11,18)(12,31)(13,20)(14,25)(15,22)(16,27), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,23)(2,28)(3,17)(4,30)(5,19)(6,32)(7,21)(8,26)(9,24)(10,29)(11,18)(12,31)(13,20)(14,25)(15,22)(16,27), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,23),(2,28),(3,17),(4,30),(5,19),(6,32),(7,21),(8,26),(9,24),(10,29),(11,18),(12,31),(13,20),(14,25),(15,22),(16,27)], [(1,16),(2,20),(3,10),(4,22),(5,12),(6,24),(7,14),(8,18),(9,32),(11,26),(13,28),(15,30),(17,29),(19,31),(21,25),(23,27)], [(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4H | 4I | ··· | 4T | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | ||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D4 | M4(2) |
kernel | C24⋊3C8 | C2×C22⋊C8 | C24×C4 | C23×C4 | C25 | C24 | C22×C4 | C23 |
# reps | 1 | 6 | 1 | 6 | 2 | 16 | 12 | 12 |
Matrix representation of C24⋊3C8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0] >;
C24⋊3C8 in GAP, Magma, Sage, TeX
C_2^4\rtimes_3C_8
% in TeX
G:=Group("C2^4:3C8");
// GroupNames label
G:=SmallGroup(128,511);
// by ID
G=gap.SmallGroup(128,511);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^8=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations