Copied to
clipboard

G = C24:3C8order 128 = 27

1st semidirect product of C24 and C8 acting via C8/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24:3C8, C25.6C4, C23.30M4(2), (C24xC4).2C2, (C23xC4).29C4, C23.31(C2xC8), (C22xC8):1C22, C4.110C22wrC2, C22:2(C22:C8), C24.111(C2xC4), (C22xC4).674D4, C2.2(C24:3C4), C22.33(C22xC8), C2.3(C24.4C4), C23.262(C22xC4), (C23xC4).632C22, C22.44(C2xM4(2)), C23.192(C22:C4), (C22xC4).1615C23, (C2xC22:C8):9C2, C2.16(C2xC22:C8), (C2xC4).1511(C2xD4), (C22xC4).440(C2xC4), (C2xC4).329(C22:C4), C22.123(C2xC22:C4), SmallGroup(128,511)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24:3C8
C1C2C4C2xC4C22xC4C23xC4C24xC4 — C24:3C8
C1C22 — C24:3C8
C1C22xC4 — C24:3C8
C1C2C2C22xC4 — C24:3C8

Generators and relations for C24:3C8
 G = < a,b,c,d,e | a2=b2=c2=d2=e8=1, ab=ba, eae-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, cd=dc, ce=ec, de=ed >

Subgroups: 756 in 426 conjugacy classes, 104 normal (8 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C23, C23, C23, C2xC8, C22xC4, C22xC4, C22xC4, C24, C24, C22:C8, C22xC8, C23xC4, C23xC4, C25, C2xC22:C8, C24xC4, C24:3C8
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, C23, C22:C4, C2xC8, M4(2), C22xC4, C2xD4, C22:C8, C2xC22:C4, C22wrC2, C22xC8, C2xM4(2), C24:3C4, C2xC22:C8, C24.4C4, C24:3C8

Smallest permutation representation of C24:3C8
On 32 points
Generators in S32
(1 23)(2 28)(3 17)(4 30)(5 19)(6 32)(7 21)(8 26)(9 24)(10 29)(11 18)(12 31)(13 20)(14 25)(15 22)(16 27)
(1 16)(2 20)(3 10)(4 22)(5 12)(6 24)(7 14)(8 18)(9 32)(11 26)(13 28)(15 30)(17 29)(19 31)(21 25)(23 27)
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,23)(2,28)(3,17)(4,30)(5,19)(6,32)(7,21)(8,26)(9,24)(10,29)(11,18)(12,31)(13,20)(14,25)(15,22)(16,27), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,23)(2,28)(3,17)(4,30)(5,19)(6,32)(7,21)(8,26)(9,24)(10,29)(11,18)(12,31)(13,20)(14,25)(15,22)(16,27), (1,16)(2,20)(3,10)(4,22)(5,12)(6,24)(7,14)(8,18)(9,32)(11,26)(13,28)(15,30)(17,29)(19,31)(21,25)(23,27), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,23),(2,28),(3,17),(4,30),(5,19),(6,32),(7,21),(8,26),(9,24),(10,29),(11,18),(12,31),(13,20),(14,25),(15,22),(16,27)], [(1,16),(2,20),(3,10),(4,22),(5,12),(6,24),(7,14),(8,18),(9,32),(11,26),(13,28),(15,30),(17,29),(19,31),(21,25),(23,27)], [(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

56 conjugacy classes

class 1 2A···2G2H···2S4A···4H4I···4T8A···8P
order12···22···24···44···48···8
size11···12···21···12···24···4

56 irreducible representations

dim11111122
type++++
imageC1C2C2C4C4C8D4M4(2)
kernelC24:3C8C2xC22:C8C24xC4C23xC4C25C24C22xC4C23
# reps16162161212

Matrix representation of C24:3C8 in GL6(F17)

100000
0160000
0016000
000100
000010
0000016
,
1600000
0160000
0016000
0001600
0000160
000001
,
1600000
0160000
0016000
0001600
0000160
0000016
,
100000
010000
001000
000100
0000160
0000016
,
010000
1300000
000100
001000
000001
0000160

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0] >;

C24:3C8 in GAP, Magma, Sage, TeX

C_2^4\rtimes_3C_8
% in TeX

G:=Group("C2^4:3C8");
// GroupNames label

G:=SmallGroup(128,511);
// by ID

G=gap.SmallGroup(128,511);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^8=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<